《运算定律与简便计算》教学反思

时间:2024-11-04 16:14:26
《运算定律与简便计算》教学反思

《运算定律与简便计算》教学反思

身为一位优秀的老师,我们需要很强的教学能力,我们可以把教学过程中的感悟记录在教学反思中,教学反思应该怎么写才好呢?下面是小编为大家整理的《运算定律与简便计算》教学反思,欢迎大家分享。

《运算定律与简便计算》教学反思1

满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!

到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。

这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。

然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!

这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的'方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。

《运算定律与简便计算》教学反思2

一、调整教材顺序,促进有效教学

“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。

二、设计对比练习,促进有效教学

在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。

学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。

如,463+82+18,463-82-18,463-82+18

9600×25×49600÷25÷49600÷25×4

三、进行逆向训练,促进有效教学

逆向运用

加法结合律:346+(54+189)=346+54+189

乘法结合律:8×(125×982)=8×125×982

乘法分配律:89×75+89×25=89×(75+25)

减法的性质:894-(94+75)=894-94-75

连除的简便:350÷(7×2)=350÷7÷2

逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

四、加强应用训练,促进有效教学

例1、求下列图形“L型”菜地的面积;

9厘米21厘米9厘米

例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?

例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。

1、学校一共买了多少个羽毛?

25×12

=25×4×3

2、买羽毛球一共花了多少元?

32×25

=8×4×25

3、每枝羽毛球拍多少元?

330÷5÷2

五、加强错例分析,促进有效教学

例1:25×32×125例2:32×125

=25×4+8×125=4×(8×125)

=4×8×4×125

例3:463-82+18例4:9600÷25×4例5:25×(400+4)

=463-(82+18)=9600÷(25×4)=25×400+4

《运算定律与简便计算》教学反思3

运算定律与简便计算,共包括了五个定律和两个性质:

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

5.针对逆向运用,有以下规律

加法结合律:346+(54+189)=346+54+189

乘法结合律:8×(125×982)=8×125×982

乘法分配律:89×75+89×25=89×(75+25)

减法的性质:894-(94+75)=894-94-75

连除的简便:350÷(7×2)=350÷7÷2

逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

《运算定律与简便计算》教学反思4

一、学会寻找题目的特点。

(1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

(2)把接近整数的写成整数和一个一位数相加减。

例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

(3)寻找能凑成整数的数,把它们相加减。

例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

二、巧妙运用简便计算。

简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

三、注重题目的对比。

有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把102拆成100+2。

总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

《运算定律与简便计算》教学反思5

本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。

简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

上了这节练习课后,学生不仅能解决问题,而且简便计算的方法也掌握得比较好,所以我认为“简便计算”的教学必须遵循“以生活实际为出发点,展示知识的发生过程,让学生知其所以然。”

《《运算定律与简便计算》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式