高中数学说课稿

时间:2024-11-08 01:18:28
关于高中数学说课稿模板汇总九篇

关于高中数学说课稿模板汇总九篇

作为一名优秀的教育工作者,可能需要进行说课稿编写工作,说课稿可以帮助我们提高教学效果。那么问题来了,说课稿应该怎么写?以下是小编为大家收集的高中数学说课稿9篇,欢迎阅读,希望大家能够喜欢。

高中数学说课稿 篇1

说教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

说教学重点:

等差数列前n项和的公式。

说教学难点:

等差数列前n项和的公式的灵活运用。

说教学方法:

启发、讨论、引导式。

教具:

现代教育多媒体技术。

教学过程

一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

上面两式相加得2S=11+10+。。。。。。+11=10×11=110

10个

所以我们得到S=55,

即1+2+3+4+5+6+7+8+9+10=55

师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

二、教授新课(尝试推导)

师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

生4:Sn=a1+a2+。。。。。。an—1+an也可写成

Sn=an+an—1+。。。。。。a2+a1

两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

n个

=n(a1+an)

所以Sn=(I)

师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

Sn=na1+ d(II)

上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

三、公式的应用(通过实例演练,形成技能)。

1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

(1)1+2+3+。。。。。。+n

(2)1+3+5+。。。。。。+(2n—1)

(3)2+4+6+。。。。。。+2n

(4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

请同学们先完成(1)—(3),并请一位同学回答。

生5:直接利用等差数列求和公式(I),得

(1)1+2+3+。。。。。。+n=

(2)1+3+5+。。。。。。+(2n—1)=

(3)2+4+6+。。。。。。+2n==n(n+1)

师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

=n2—n(n+1)=—n

生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

原式=—1—1—。。。。。。—1=—n

n个

师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

又∵d ……此处隐藏11354个字……前启后的作用。

1-3教学大纲要求

掌握点到直线的距离公式

1-4高考大纲要求及在高考中的显示形式

掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

1-5教学目标及确定依据

教学目标

(1) 掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

(2) 培养学生探究性思维方法和由特殊到一般的研究能力。

(3) 认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

(4) 渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

确定依据:

中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)

1-6教学重点、难点、关键

(1) 重点:点到直线的距离公式

确定依据:由本节在教材中的地位确定

(2) 难点:点到直线的距离公式的推导

确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

分析“尝试性题组”解题思路可突破难点

(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

2.教法

2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

确定依据:

(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

(2)事物之间相互联系,相互转化的辩证法思想。

2-2教具:多媒体和黑板等传统教具

3. 学法

3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

一句话:还课堂以生命力,还学生以活力。

3-2学情:

(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

3-3学具:直尺、三角板

4. 教学评价

学生完成反思性学习报告,书写要求:

(1) 整理知识结构。

(2) 总结所学到的基本知识,技能和数学思想方法。

(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因。

(4) 谈谈你对老师教法的建议和要求。

作用:

(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

(2) 报告的写作本身就是一种创造性活动。

(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

5. 板书设计

(略)

6. 教学的反思总结

心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

高中数学说课稿 篇9

一、教材分析:

1、教材的地位与作用:

线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

2、教学重点与难点:

重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

难点:在可行域内,用图解法准确求得线性规划问题的最优解。

二、目标分析:

在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

知识目标:

1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

域和最优解等概念;

2、理解线性规划问题的图解法;

3、会利用图解法求线性目标函数的最优解.

能力目标:

1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

2、在变式训练的过程中,培养学生的分析能力、探索能力。

3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

情感目标:

1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

三、过程分析:

数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

1、创设情境,提出问题:

在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

《关于高中数学说课稿模板汇总九篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式