高中数学说课稿

时间:2024-11-09 23:42:33
有关高中数学说课稿汇编9篇

有关高中数学说课稿汇编9篇

作为一位不辞辛劳的人民教师,就难以避免地要准备说课稿,说课稿有助于教学取得成功、提高教学质量。那么什么样的说课稿才是好的呢?下面是小编帮大家整理的高中数学说课稿9篇,希望对大家有所帮助。

高中数学说课稿 篇1

一、教材分析:

《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

二、学情分析:

学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

三、教学目的:

1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

四、教学重、难点

重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

五、教学方法

本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

六、数学思想的体现:

1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

七、教学过程:

1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

2、引入新课:

(1)平行四边形法则的引入。

学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。

所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。

这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。

设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

(3)共线向量的加法

方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大

的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去 ……此处隐藏11415个字……>

(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.

4、重点与难点

教学重点(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性.

教学难点(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性.

二、教法分析与学法指导

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.

2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.

在学法上:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.

高中数学说课稿 篇9

一、说教材:

1、教材的地位与作用

导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

2、教学的重点、难点、关键

教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

教学难点:理解导数的几何意义的本质内涵

1) 从割线到切线的过程中采用的逼近方法;

2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.

二、说教学目标:

根据新课程标准的要求、学生的认知水平,确定教学目标如下:

1、知识与技能 :

通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

过程与方法:

经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解

通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

3、情感态度与价值观:

渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值

三、说教法与学法

对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义.同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想.因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;

学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了

自主 、合作、探究的学习方法。

教具: 几何画板、幻灯片

四、说教学程序

1.创设情境

学生活动——问题系列

问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?

问题2 如图直线l是曲线C的切线吗?

(1)与 (2)与 还有直线与双曲线的位置关系

问题3 那么对于一般的曲线,切线该如何定义呢?

【设计意图】:通过类比构建认知冲突。

学生活动——复习回顾

导数的定义

【设计意图】:从理论和知识基础两方面为本节课作铺垫。

2.探索求知

学生活动——试验探究

问一;求导数的步骤是怎样的?

第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。

【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。

问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。

【设计意图】:通过学生动手实践得到平均变化率表示割线PQ的斜率。

问三;在的过程中,你能描述一下割线PQ的变化情况吗?请在图像中画出来。

【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,Q();从形的角度看, 的过程中,Q点向P点无限趋近,割线PQ趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。

探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。

【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。

问四;你能从上述过程中概括出函数在处的导数的几何意义吗?

【设计意图】:引导学生发现并说出:,割线PQ切线PT,所以割线

PQ的斜率切线PT的斜率。因此,=切线PT的斜率。

五、教学评价

1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;

2、通过学生对方法的选择,对学生的学习能力评价;

3、通过练习、课后作业,对学生的学习效果评价.

4、教学中,学生以研究者的身份学习,在问题解决的过程中,通过自身的体验对知识的认识从模糊到清晰,从直观感悟到精确掌握;

5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.

《有关高中数学说课稿汇编9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式