小学五年级数学下册《分数与除法》教学反思

时间:2024-10-26 10:38:25
小学五年级数学下册《分数与除法》教学反思

小学五年级数学下册《分数与除法》教学反思

身为一位优秀的教师,我们需要很强的课堂教学能力,借助教学反思可以快速提升我们的教学能力,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的小学五年级数学下册《分数与除法》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学五年级数学下册《分数与除法》教学反思1

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。”所以,在导入新课环节,我有意设计了两道除法计算题:8÷9=

4÷7=

学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。

汇报后,我引发学生思考:8÷9=0.88……和8÷9=8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。

之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。

我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。

成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的'深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

小学五年级数学下册《分数与除法》教学反思2

分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

1.以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

2.分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。

从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。

《小学五年级数学下册《分数与除法》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式